
Masters Project:Fourier Accelerated Dynamics

in HMC Simulations of Lattice Field Theory

Aneirin John Baker

supervised by
Brain Pendleton and Roger Horsley

Abstract

I present results for a Fourier Accelerated version of Hybrid Monte
Carlo specifically looking for an increase in speed towards observables.
I also present a new algorithm designed specifically to deal with quartic
terms which provide problem cases in many simulations.

January 4, 2021

Contents

1 Personal Statement 2

2 Introduction 2

3 Monte Carlo Methods 3
3.1 Markov Chain Monte Carlo 5

3.1.1 Markov Chains . 5

4 Hamiltonian Monte Carlo 5
4.1 Simulation of a Path Integral 5
4.2 Hamiltonian Dynamics . 6
4.3 Discretisation of the Hamiltonian Equations 7
4.4 Conservation of the Hamiltonian 7
4.5 Update Method . 8

4.5.1 Leapfrog Method . 8
4.5.2 Detailed Balance . 9

4.6 HMC Algorithm . 10
4.7 Harmonic Oscillator . 12

4.7.1 Results . 13
4.8 Anharmonic Oscillator . 18

5 Fourier Acceleration 22
5.1 Explanation of Fourier Acceleration 22
5.2 Methods and Implementation 24

5.2.1 Harmonic Oscillator 27
5.3 Comparison of Fourier Acceleration to Regular HMC 28

6 Conclusion 30

7 Acknowledgements 30

1

1 Personal Statement

I spent the first 2 weeks of the project reading the material surrounding my
project - mainly [1] and [2].I also began to plan out how I would implement
the algorithms in C++, in doing this I gained an understanding of what
the main goals of the first half of my project would be and how they could
be achieved. I identified which Monte Carlo observables would be useful to
measure in these simulations.

For the next eight weeks I implemented the Hybrid Monte Carlo algo-
rithm and debugged my code whilst developing analysis tools in python. I
compared the results from my simulations to the results from [3] (for the
harmonic oscillator) and [4]for the anharmonic oscillator. Having obtained
positive results for the harmonic oscillator I started reading up on Fourier
Acceleration. I examined how to integrate a fast Fourier Transform into the
simulation in order to produce the most efficient simulation - the solution I
decided on was to use a package called FFTW[5].

Following this I began to integrate the Fourier Acceleration into my code
and test it against the regular HMC algorithm. In addition to this I ran
longer HMC simulations to verify my findings from the previous semester.

At the beginning of the second semester I finished implementing Fourier
acceleration into my code and began looking into how to quantify if there
was any improvement in speed gained by this algorithm. As the semester
progressed I started looking into how to integrate the Anharmonic Oscillator
into my code - this was the most complicated part of the project, as discussed
in the body of this report.

For the final parts of semester two I worked mainly on perfecting the al-
gorithm for the harmonic oscillator and trying to implement the anharmonic
oscillators algorithm. I spent the final two weeks of semester two working
on the write up for this project.

2 Introduction

Lattice Field Theory(LFT) has been a successful tool in simulating Quan-
tum Chromo Dynamics(QCD) since its inception in 1974. Recently there
has been quite a bit of interest [6][7] in improving the main algorithm within
LFT, this algorithm is Hybrid Monte Carlo (HMC). Any speed up to this
algorithm would be extremely useful to the lattice community as LFT sim-
ulations often take months to complete, hence a speed up of even a small
factor could have a large impact. This project aims to explore the possibility
of improving the HMC algorithm with a method called Fourier Acceleration.

I will first establish a base line by replicating the results found in [3] for a
harmonic and anharmonic oscillator. Then I will describe how i obtained my

2

new algorithms for Fourier Accelerted HMC in both the harmonic and an-
harmonic cases and present my results for the harmonic case. Unfortunately
there was not enough time to complete the simulation of the anharmonic
algorithm although with a little more work this could be achieved perhaps
in a summer project. My simulations will only be toy models as they will
only be one dimensional simulations but this is only a test case to prove
that the They will be written in C++ and Python all of the code used will
be my original work, apart from a Fast Fourier Transform package (FFTW
[5]) which will be used for the fourier acceleration as it is the most efficient
way of computing a discrete fourier transform

3 Monte Carlo Methods

A lot of integrals within physics are too complicated to evaluate analytically
to calculate them we must turn to numerical/computational methods to
find an answer. When the dimensionality of these integrals is low enough
these can be evaluated using techniques such as Tranpzoid rule or Simpsons
rule.However techniques often break down when then dimension gets large -
usually around d = 4 - when this occurs the only technique which has been
proven useful is the Monte Carlo Method.

The Monte Carlo Method is a way to estimate integrals based on gen-
erating random numbers or states of a system. In a generic Monte Carlo
simulation a random system is generated using a pseudo random number
generator usually drawn from a specific distribution. An energy function is
then calculated using the random system which was just generated. This
energy function is a measure of how close the system is to equilibrium in the
sense that it is minimised when the system is in equilibrium.

A basic Monte Carlo Algorithm would then accept all of these states
and compare the final distribution of states to some criteria to determine
the value of the integral in question - in most cases the average value of the
integral.

The method can be improved upon by adding in an accept/reject step
where the states are accepted or rejected based on the probability

P = min[1, exp(−∆H)] (1)

Where ∆H is the change in the Hamiltonian of the system. If the new state
is accepted the old state is replaced with the new state and the old one is
discarded, if the state is rejected then the old state of the system is kept
and a new random state is generated.

We can use the configurations generated by this update procedure to
estimate integrals which represent physical quantities.Using the fact that a

3

d dimensional integral may be calculated using the statistical average

I =

∫
V
ddrf(r) =

∫
V d

drf(r)

V
V = f̄V V (2)

Where f̄V is the average of the function over some volume V
For large dimensional integrals Monte Carlo methods are much more

efficient than standard discretization methods. The Monte Carlo estimates
can be evaluated by using the statistical average

I ≈
∑n

i=0 f(ri)

n
V (3)

As n approaches infinity this approximation will converge to the true
value of I.

These Monte Carlo methods can be used to simulate a variety of dynam-
ical systems ranging from simulations of molecular dynamics to the spread
of diseases.

There is an issue with Monte Carlo methods concerning the generation
of random states. If we use a uniform distribution the danger of generat-
ing states, which are physically not very realistic, is much higher than we
would want. Although these states would be immediately rejected by the
update procedure it would still slow down the simulation significantly. To
get around this problem several methods are employed the first being Im-
portance which involves generating states through a biased method. In this
way we ensure the states which are physically more realistic are generated
with a higher probability. In the case of statistical mechanics or molecular
dynamics the usual practice is to pull the random numbers from the Boltz-
mann distribution. In this way the equilibrium state is much more likely
to be produced and so the simulation will converge to the value of < A >
much quicker, where A is some observable given by

< A >=
1

N

N∑
i=0

Ai (4)

as N tends to infinity this Monte Carlo average tends to the true value.
This is called Importance Sampling, it is a start to improving the basic
Monte Carlo algorithm so it can be applied to larger and more complex
systems.However the editing the probability in this way that means we need
to compensate for this further on in the calculation so as to not change the
probability of going from one state to another. The second method which
we use within the algorithm is the Metropolis Hastings algorithm, this is a
type of Markov Chain algorithm which allows the system to evolve towards
equilibrium quicker.

4

3.1 Markov Chain Monte Carlo

3.1.1 Markov Chains

A Markov chain is a dynamical rule which completely determines the future
of a system. If a system is in a state µ then in a finite amount of steps a
Markov chain can evolve a system into a state ν. We choose a distribution
to sample from to be the equilibrium distribution which we wish to simulate.
This way the Markov Chain then evolves towards this state quicker than a
regular Monte Carlo algorithm.

4 Hamiltonian Monte Carlo

Markov Chain Monte Carlo simulations produced results which were ac-
curate when compared to theory [3]. However these methods were not
suited for simulations of Lattice Field Theory due to the Grassman nature
of fermions, and hence the sign problem [8]. To combat this new versions
of Monte Carlo were employed to help with the calculations. These were
formalised in the 1987 paper, Hybrid Monte Carlo(HMC) [1]. This new algo-
rithm modified the update step of the Monte Carlo algorithm so as to include
a more directed approach to exploring phase space - where as the standard
Monte Carlo algorithm uses a more random walk to explore phase space.
This new approach uses Hamiltonian dynamics in the update equations so
that the non-physical regions of phase space are less likely to be explored
and thus the simulations will converge to equilibrium much quicker.

4.1 Simulation of a Path Integral

As mentioned previously this project aims to investigate ways of speeding
up algorithms within Simulations of Lattice QCD. In this vein the Path
Integral approach to Quantum Mechanics was used. To numerically simulate
a path integral first space and time were discretised, to simulate a continuous
path integral we place oscillators - or more generally the system we wish to
examine - at every point on a lattice. We then associate each point on the
lattice with a point in time, the separation between each of these points is
called the Lattice spacing (in our equations a).These oscillators will then
be evolved using the HMC algorithm forward in Monte Carlo/Computer
time until they reach equilibrium. With all of this in mind we have now a
lattice of oscillators from which we can collect simulation data and calculate
various Monte Carlo Observables which, as a → 0, will converge to the
correct continuum limit.This type of Monte Carlo simulation of a quantum
system was first done by Creutz and Freedman [3] in 1981 however not using
HMC.

5

4.2 Hamiltonian Dynamics

The main body of Hybrid Monte Carlo (or Hamiltonian Monte Carlo) simu-
lations are based in Hamiltonian Dynamics. A quick overview of the subject
is provided and then a description of how these equations can be changed
into update equations through discretisation which can then be implemented
into an algorithm. We will then explore further why the discretised algo-
rithm can still be used even though space and time are not modelled as
continuous.

The central equations of Hamiltonian Dynamics are Hamilton’s equations

∂qi
∂t

= −∂H
∂pi

∂pi
∂t

=
∂H

∂qi

(5)

for i = 1,, d where d is the dimension of the system, p is the conjugate
momentum and q is the position of the system. These equations can be
integrated to obtain the equations of motion of the system defined by the
function H the Hamiltonian, defined in terms of the Lagrangian of the sys-
tem L through the Lagendre transform, however for our systems we can
think of it as the sum of the Kinetic and Potential energy of the system.

H(q, p) = q̇
∂L

∂q̇
− L(q, q̇) (6)

We now examine some properties of Hamiltonian dynamics which are central
in recasting them in terms of a Markov Chain Monte Carlo update. First
we note that Hamiltonian dynamics are classical and hence deterministic,
they should then be reversible, that is if we integrated forward to time T
we should be able to reverse that integration by setting T → −T and then
integrating backwards along the trajectory and return to the initial state.We
expect that the discretised update equations we are looking for should also
have this property The next property of Hamiltonian dynamics is that along
these classical trajectories the Hamiltonian (or energy in classical systems
) is conserved i.e.

dH(q, p)

dt
= 0 (7)

This can be proved using (5).

dH(p, q)

dt
=

d∑
i=1

[dqi
dt

∂H

∂qi
+
dpi
dt

∂H

∂pi

]
=

d∑
i=1

[∂H
∂pi

∂H

∂qi
+
∂H

∂qi

∂H

∂pi

]
= 0 (8)

The conservation of the Hamiltonian implies that the acceptance probability
within the Monte Carlo simulation would be one (note that this is all in the

6

continuum limit). However if the Hamiltonian is only partially conserved
the acceptance probability will never be 100%, but it can be made close to
100% by taking the discretisation parameters to 0. As we know there is
a conserved quantity if the Hamiltonian is explicitly independent of t - as
will be the case - then we can use Noethers theorem to find the conserved
quantity. After the application of Noethers theorem we find that the energy
of the system will be conserved - or only partially in our case as we will find
in the next section. This gives us a effective check as to whether or not the
system is working.

4.3 Discretisation of the Hamiltonian Equations

To create a set of equations which can be used in a computer simulation,
Hamilton’s equations need to be discretised. To do this we approximate a
derivative with a finite difference (in this case a forward difference) so that
we can put the equations into the necessary form.

A forward difference can be thought of as just the definition of differenti-
ation.

lim
h→0

f(x+ h)− f(x)

h
= f ′(x) (9)

For finite differences we simply don’t take the limit as h tends to 0
and instead keep it at some finite number. After redefining f(x) → qi and
f(x+ h)→ qi+1 and replacing the small difference h with our discretisation
parameter a, we can make the following deductions.

∂H

∂q
= −ṗ→ −pi+1 − pi

a
(10)

∂H

∂p
= q̇ → qi+1 − qi

a
(11)

These equations can now be applied to a Hamiltonian of our choosing to
produce the update equations needed for the simulation.

4.4 Conservation of the Hamiltonian

As we would like the simulation to be as physically realistic as possible. One
condition for this is that we need to ensure that the Energy of the system
remains constant through out the simulation (in this case the energy of the
system is numerically equivalent to the value of the Hamiltonian).Hence we
require that the Hamiltonian should be conserved even after discretisation.
To prove that the Hamiltonian will still be conserved with this discretisation
we consider a transition matrix which would take the the original coordinates
(p, q) to new coordinates (p∗, q∗) with a mapping Ts. To prove that this

7

mapping preserves the volume of this system in phase space we examine the
Jacobian of this mapping. This mapping can be written as

Tδ(p, q) =

[
p
q

]
+ δ

[∂p
∂t
∂q
∂t

]
+ termsoforderδ2 (12)

where δ is a small parameter close to 0

With this mapping we can construct a Jacobian which describes how
the volume of phase space will change. Specifically the determinant of the
Jacobian will determine the factor by which the volume changes. If the
determinant is 1 then the volume in phase space will not change. From the
mapping above we can construct the Jacobian

Bδ =

[
1 + δ ∂

2H
∂p∂q δ ∂

2H
∂p2

δ ∂
2H
∂q2

1− δ ∂2H∂q∂p

]
+ termsoforderδ2 (13)

The determinant of this is

det(Bδ) = 1 + δ
∂2H

∂p∂q
− δ ∂

2H

∂q∂p
+ termsoforderδ2 (14)

where the terms of order δ cancel out so that the determinant is 1. This
means that the phase space volume is preserved under Hamilton’s equations
and in this case the discretised Hamilton’s equations. This implies that
the Hamiltonian is conserved, being conserved means that in our update
algorithm we do not need to take account of any volume differences in our
probability distribution. If there was some difference in volume the Jacobian
of the transformations would need to be taken into account in the Metropolis
Update which in some cases may not be computable.

4.5 Update Method

Now we have the Hamiltonian equations of motion in differential equation
form we can apply standard methods in order to produce results for any
Hamiltonian. In general a Hamiltonian will not be integrable and so we
will need to approximate a solution, that is we will need to discretise the
equations and produce further equations, known as update equations, which
will approximate the trajectory of particles as they move forward in time.
This can be achieved by a number of methods some better than others, here
we will use a method known as Leapfrog Integration for the reasons given
below.

4.5.1 Leapfrog Method

The Leapfrog method is a method of integrating equations in a reversible
manner. It uses the momentum (or velocity) half way between the position

8

updates so as to obtain a better approximation [9] to the actual velocity of
the oscillator at that point in time. The general update equations are given
below

pi(t+
ε

2
) = pi(t)−

ε

2

∂U

∂qi
(qi(t)

qi(t+ ε) = qi(t) + ε
pi(t+ ε

2)

m

pi(t+ ε) = pi(t+
ε

2
)− ε

2

∂U

∂qi
(q(t+ ε))

(15)

where U is the potential associated with the system which these equations
are being used to simulate (which comes from the Hamiltonian being split
up into H = K + U where K is the kinetic energy of the system).ε is the
time step which each leapfrog step takes, in a sense it is the measure of how
close to an analytic integration the method is. These steps will be repeated
n times so that the algorithm will be evolved over a time T = nε.

This method is more effective than other simple integration methods
such as the Euler method, for a more in depth discussion of Leapfrog and
other update methods see [9]

4.5.2 Detailed Balance

The Metropolis Update described in the Monte Carlo section obeys a con-
dition called Detailed Balance.Simply put this leaves the distributions from
which the states are being sampled invariant after the Metropolis Update
steps. This characteristic is needed in the more complex algorithms as we too
need the distributions to remain invariant. We now prove that the Markov
Chain Monte Carlo which is being proposed here also obeys Detailed Bal-
ance.

We can partition phase space into different sections where Ak is the initial
state and Bk is the image of the initial state after N Leapfrog steps. Due
to the fact that the Leapfrog Integration scheme is reversible both A and
B will partition phase space. We now note that Detailed Balance will hold
if the following condition holds, which is just a re statement of the usual
detailed balance formula from Statistical Mechanics

P (Ai)T (Bj |Ai) = P (Aj)T (Bi|Aj) (16)

where P (Ai) is the Canonical Distribution which is being used to gener-
ate the states from A and T (Ai|Bj) is the conditional probability of going
from state A to B. It is easy to see that when i 6= j there is no probability of
going from state Ai to state Bj that is T (Ai|Bj) = 0 (ie when the partitions
are not in the same set then the transition will be impossible from one to
another).The transition probability from A to B is defined to be

9

exp(−HAk)min[1, exp(−HBk+HAk)] = exp(−HBk)min[1, exp(−HAk+HBk)]
(17)

which can easily be seen to be true for the cases where HBk > HAk and
vice versa. This proves that Detailed Balance is obeyed for the Metropolis
Update which is being used in the HMC algorithm. To now see that this
Detailed Balance proves that the canonical distribution is left invariant it
will need to be shown that the probability will remain invariant under a
Leapfrog update step. Letting R(X) be the probability of a rejection we
can write the probability of a state being in a region of phase space as the
probability of the update step being reject plus the probability that another
state has moved into that region of phase space. This can be written as

P (Bk)R(Bk) +
∑
i

P (Ai)T (Bk|Ai)

= P (Bk)R(Bk) +
∑
i

P (Bk)T (Ai|Bk) (18)

= P (Bk)R(Bk) + P (Bk)
∑
i

T (Ai|Bk)

= P (Bk)R(Bk) + P (Bk)(1−R(Bk) = P (Bk)

which proves that the probability distributions are left invariant after the
HMC algorithm.

4.6 HMC Algorithm

Using the update methods described above we can simulate a Markov Chain
which can more efficiently evolve the system towards equilibrium, which is
better than a totally random Monte Carlo simulation.

There are two main steps within the hybrid (Hamiltonian) Monte Carlo
algorithm. First the new samples of momentum are drawn from a Gaussian
distribution with mean of 0 and a variance of 1. These new momentum
variables are then used along with the previous position variables to update
the position and momentum for n Leapfrog steps with a step size of ε. This
then provides us with a set of variables (p∗, q∗) which are the new variables
that have been evolved along a trajectory in phase space of length nε. Where
n is the number of Leapfrog steps which have been taken.

A Metropolis update is then performed where the difference in the Hamil-
tonian between the beginning and end of the leapfrog steps is used as the
argument for the exponential

10

AcceptanceProbability = min[1, exp(−H(p∗, q∗) +H(p, q)] (19)

If the proposed state is not accepted the old variables (p, q) are used in the
next loop through the algorithm. In the first iteration of the HMC algorithm
one of two possibilities will occur: either the simulation starts off in what
is known as a cold state where all of the position variables (in this case)
are set to 0, or they are drawn from a uniform random distribution and the
simulation proceeds from there. As this process should always evolve the
system through phase space to its equilibrium position -as we have specified
the equilibrium distribution by hand - then the starting point should not
make any difference. However it is often easier computationally to vary the
starting parameters according to the type of simulation running. In this
project it was found that the system would converge much quicker if we
took a random distribution ranging from -1 to 1.

Algorithm 1 Hybrid Monte Carlo Algorithm

1: Pick Random momenta From Gaussian Distribution
2: for N iterations do:
3: pi+1 = pi − 1

2∆t∂H∂qi
4: for n iterations do:
5: qi+1 = qi + ∆∂H

∂pi
6: if j 6= n-1 then:
7: pi+1 = pi −∆t∂H∂qi

8: pi+1 = pi − 1
2∆t∂H∂qi

9: Perform Metropolis Update on the new state (p∗, q∗)

11

A more in depth explanation of the algorithm can be found in any of the
following [10][2][11]

Over the next sections findings for the harmonic and anharmonic oscil-
lators will be presented, comparing them to known discretised results and
the theoretical results in the continuum limit.

4.7 Harmonic Oscillator

To Simulate a Quantum Harmonic Oscillator we start with continuum action

SE [q(t)] =

∫
dt

(
1

2
∂tq(t)∂

tq(t) + V (q(t))

)
(20)

We then discretise it and transform to a Hamiltonian formulation to obtain
the equations

H(p, q) =
p2i
2m

+ S

S(p, q) = a

N∑
i=1

(
1

2

(qi+1 − qi)2

a2
+ V (qi)

) (21)

Where a is the lattice spacing and the potential V (qi) determines whether
the simulation is a harmonic or anharmonic oscillator in this case the po-
tential is

V (qi) =
1

2
µ2q2i (22)

Note that the first term in (20) corresponds to the coupling term in our
discrete action. Hamiltons equations are now applied to the Hamiltonian
above and then the equations are discretised accordingly so that usable
update equations are produced. The resulting equations are

qi+1 = qi +
∆t

m
pi

pi+1 = pi −∆t
(
mqia+

m

a
(2qi − qi−1 − qi+1)

) (23)

These equations were then applied in the HMC algorithm with a large
array of oscillators. N , the number of oscillator, was chosen to be 1000 so
as to avoid any finite size effects.

Periodic Boundary conditions were implemented and hence the simula-
tion was really a simulation of oscillators on a circle. The Lattice spacing
was also chosen so as to approximate the continuum limit. For the initial
runs a was chosen to be 1 for simplicity, however when the simulation was
found to agree with theoretical calculation a was reduced to approximate
and test the continuum limit.

12

4.7.1 Results

In this section the results of the simulations which have been run. All the
parameters which were used in the simulations will be noted below the result
tables or graphs which are presented.However through out the simulations
of the harmonic oscillator the mass was set to 1.0 in accordance with the
results we were comparing to. To obtain these results the simulation went
through what is known as a burn period this is where it is not in equilibrium
but by the end of the period it should be equilibrium. This can be seen from
example graph below

Figure 1: This graph of < x > vs Monte Carlo iterations shows that there
is large statistical fluctuations up until 7500

When the burn period for this simulation is included we find that the
results become more accurate and the error bars on the results decrease.
Hence all these simulations include a burn period of 5000 iterations out of
a total of 50,000 Monte Carlo iterations. Throwing away 10% of the data is
more than enough here however, to ensure that the system is in equilibrium.

With this burn period in our simulation we now turn to the results of this
basic Hybrid Monte Carlo Algorithm. We start with the Group State Wave
Function for a harmonic oscillator. Since we are on a discrete lattice there
are some corrections which occur [3] which need to be taken into account.
These corrections amount to a change in the oscillation frequency of

13

ω2 = µ2(1 +
a2µ2

4
) (24)

This leads to a wavefunction which has the form

|Ψ(x)|2 = (
ω

π
)2exp(−ωx2) (25)

as we take a → 0 we see that this equation reduces to the usual Wave-
function for a harmonic oscillator.

Figure 2: Wave function of the Harmonic Oscillator with discrete theory
wave function plotted in Blue. For parameters µ = 1.0 and a = 0.05

For this graph the parameters a=1 and µ= 1. To get this wave function
the positions of an oscillator along the lattice were binned into a Histogram
for each iteration. In this way the sample which is obtained is much more
representative of the simulation than just one iteration. The blue line plotted
is the discrete wave function described in (25) and the dotted line is the
continuum theorem.

14

0 1000 2000 3000 4000 5000

0.00

0.02

0.04

0.06

0.08

<X
>

Average X
Simulated AvgX

0 1000 2000 3000 4000 5000
Iterations

0.0

0.2

<X
>

er
ro

r

Figure 3: Graph of average x over the simulation for a=1.0 and mu = 1.0

Figure 3 shows how the average x varies over the simulation. There are
several things to take note of in this graph. First and most obvious is that
the graph does not deviate much from the theoretical line (in red) after
going into equilibrium meaning that the simulation remains in equilibrium
after the initial equilibration. This gives some evidence that the simulation
is physical as it does not deviate from equilibrium. The second point is that
the simulation tends to the correct average x value of 0. As the harmonic
potential is symmetric about 0 the integral

< x >=

∫
dxxe−x

2
= 0 (26)

evaluated to 0 and hence the average x should go to 0.

15

(a) Plot of Average exp(-delta H) (b) plot of Average Action

Figure 4: Plots of Action and exp(-delta H) using a=µ=1.0

The average action shows much the same as figure 3. The more interest-
ing graph here is the average ∆H. This graph shows the difference between
the Hamiltonian at the beginning of the Leapfrog algorithm and at the end.
This difference quantifies how close to equilibrium the system is. We can
see from the scale of this graph the simulation is very close to equilibrium
and that it stays in equilibrium when the graph flattens out.

The main way of knwoing whether or not this simulation was working
was to look at the ground state energy. To calculate this we use the Virial
Theorem for a general quartic or anharmonic oscillator.

E0 = µ2 < x2 > −3λ < x4 > (27)

Lattice Spacing E0 Simulated E0 Discrete Theory
Ratio Between simulated
and Discrete Theory

1 0.447284 0.447214 1.00015652
0.5 0.485350 0.485071 1.00057517
0.1 0.498354 0.499376 0.99795345
0.05 0.499583 0.499844 0.9994774

Table 1: Table for the Ground state energy calculated from the virial theo-
rem

values here taken from equations found in [3] namely

< x2 >=
1

2µ(1 + a2µ2

4)
1
2

(
1 +RN

1−RN

)
(28)

Where RN takes into account the finite lattice size with R given by

R = 1 +
a2µ2

2
− aµ

(
1 +

a2µ2

4

)
(29)

16

For large enough N the ratio at the end of this equation is approximately 1
and so can be ignored (e.g. when N=100 a=1.0 and µ = 1.0 RN =6.22 ×
10−61 so essentially 0) . We can now input values for a and µ into the
equation to get values for E0 in the discrete theory.The continuum theory
of this equation is

< x2 >=

∫
dxx2e−x

2
=

1

2
(30)

Related to (28) above the autocorrelation function can be used to calculate
the excited states of the system. Using the same method as Creutz et al.[3]
used to evaluate the autocorrelation function and obtain the first excited
state, we plot the correlation function and then fit an exponential to the
graph which gives us the difference between the ground and first excited
state. An alternate (and equivalent method) is to use the equation

E1 =
−1

∆τ
ln

[
< x(0)x(τ + ∆τ >)

< x(0)x(τ) >

]
+ E0 (31)

where τ is the time index along the lattice which the oscillators lie on. To
generate the theoretical values we can use a generalised version of (28)

< xixi+j >=
1

2ω(1−RN)
(Ri +RN−j) (32)

this equation was used to generate the theoretical values in the graph below.

17

Figure 5: Autocorrelation for the harmonic oscillator for a = µ = 1.0.With
Theoretical and simulated values plotted, this graph is used to determine
the first excited state.

From this graph which shows the corelation time along the lattice we
calculate the difference between the ground and first excited state to be
E1−E0 = 0.95486 which is in good agreement with the theoretical value of
0.96242.

All this evidence shows that the HMC algorithm works in the case of the
harmonic oscillator. This will now be used as a base case to show where the
HMC algorithm falls down and thus an improvement in speed is needed.

4.8 Anharmonic Oscillator

The Anharmonic oscillator differs from the harmonic oscillator by a quartic
term. This term generates a double welled potential. It is this well that
causes the difficulty in simulating an anharmonic oscillator. In this case we
parameterised the potential in terms of a new parameter f which made it
easier to identify the locations of the wells.

V (q) = λ(q2 − f2)2 (33)

Here λ is the parameter which controls the depth of the potential wells
and f describes the location along the x axis.There is also a constant term

18

λf4 included in this potential, however it is easy to correct for this in our
equations as it is only a constant and will not make any difference to the
physics - as we can just add a factor of λf4 to the ground state energy to
correct for this. When plotted this equation is

Figure 6: Anharmonic Potential for λ = 3 and f2 = 4 with m = 0.5 to make
the potential agree with results from[4]

The double well as mentioned earlier is the problem with this system.
The oscillators require a larger momentum to get over (tunnel through) the
potential barrier and into the other side. By the very nature of large numbers
they are not very common in a Gaussian distribution (the distribution which
we are sampling from in this simulation) and so the system does not often
tunnel from one side of the potential well to the other. This produces results
which are not representative of the whole of phase space, we can see this
from the plots of the Wave function such as this one, note that for these
simulations for the anharmonic oscillator the mass was set to 0.5 to bring
our results in line with [4]

19

4 2 0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
|p

si
|^

2
Anharmonic Wavefunction for mu=-4 lamba =0.1

Figure 7: Wavefunction for an anharmonic oscillator with λ = 1 and f2=9,
noting the asymetrical peaks.

Here we notice that the peaks are of different heights in the wave-
function. This gives evidence that the simulation is staying in one side
of the potential well more than the other. This is not what is desired in this
simulation and will give results which are not valid. This graph also shows
some of the tunneling. The small peaks in the middle of the graph are the
simulation tunneling from one well to another. This is the quantity that we
wish to accelerate with the new algorithm proposed.

This can also be seen in the calculations for the ground state energy.
Using the values found in [4] for the harmonic oscillator (making sure that
the Hamiltonian we use is the same as the one used in the above paper)we
can compare our simulated values to theoretical values for an anharmonic
oscillator. In doing this we find that the anharmonic oscillator is not as
stable as the harmonic oscillator. In the sense that it takes a long time to
evolve to equilibrium and the time step needs to be taken towards 0 for the
acceptance rate to be non zero. This can also be seen in the acceptance
rates of the states within the simulation. At the same lattice spacings and
time step, as for a Harmonic oscillator,the acceptance rate is very small and
so the time step has to be reduced in order that the equations of motion are
not integrated as far and thus have less chance to deviate significantly from

20

the continuum trajectory.

f E0 Simulated E0 Continuum Theory Ratio

-1 2.595 2.677 0.969
0 1.035 1.060 0.976
1 1.150 1.137 1.011
2 1.93 2.289 0.843

Table 2: Table of values for the ground state energy of an anharmonic
oscillator for a lattice spacing of 0.1

In comparison with the same values or ratios for the harmonic oscillator
these values are much less accurate. We note that there is no analytic
solution for the anharmonic oscillator In comparison with the same values
for the harmonic oscillator these values are much less accurate. This could
be due to the comparison being between the simulated discrete values and
the continuum values, as we saw that there can be a significant difference
between the discrete and continuum values. However the continuum values
should be reached when a is taken to 0 as shown in the table below.

Lattice Spacing a Ground State Energy E0 < ∆H >

1.0 0.5649 -0.08
0.8 0.6469 -0.04
0.5 0.8043 0.02
0.2 0.9569 -0.6
0.1 1.03534 0.2
0.05 1.2468 2.44

Table 3: Table showing how the ground state energy for f2 = 0 varies with
the lattice spacing. The average ∆H has been added to show that when we
take a too small the simulation breaks down, it should stay close to 0.

21

5 Fourier Acceleration

Now we have seen that the HMC algorithms works for a basic harmonic
oscillator and an anharmonic oscillator we can now look for some way of
improving this algorithm. As noted in section 4.8 above, the anharmonic
oscillator is nowhere near as accurate as the harmonic oscillator. This is due
to the λ(q2 − f2)2 term in the action, this potential has a double well and
hence some of the states can get stuck in one side of the potential. In a real
anharmonic oscillator there should be an equal probability of the oscillators
being in either well. However if some of the oscillators get stuck in one of
the wells this statement will not be true in our simulation. This is due to
the basic fact that large numbers by their very definition are uncommon in
a Gaussian distribution (which is where we are drawing our numbers from).
These large numbers are needed to generate a momentum which can push
the oscillators over the potential barrier and into the other well, known as
tunneling. We need to find some way of improving the amount of tunneling,
known as the tunneling rate, in this situation our method of choice will be
to explore Fourier Acceleration.

5.1 Explanation of Fourier Acceleration

The idea of Fourier Transform is to change the momentum slightly so we
emphasis the low lying modes in the simulation. This then makes the config-
urations where the system will tunnel more likely to appear in the simulation
thus fixing the problem which we identified in the basic HMC case. Another
way of thinking about Fourier acceleration is to note that now all of the os-
cillators are uncoupled they can evolve freely without any interference from
their neighbors and hence can evolve to equilibrium quicker than when they
were coupled. For more information on Fourier acceleration see [6].

This idea of Fourier Acceleration is based on boosting the low lying
fourier modes in this simulation which are suppressed. Boosting these modes
then allows the simulation to more efficiently tunnel between the two allow-
able states. We first need to define what the Fourier transform on a lattice
(or discrete Fourier transform) is. For our purposes we define it to be

f̃(k) = a
∑
x

f(x)e−ikx (34)

In a continuum Fourier transform the volume of the system is assumed to be
infinite but as we have periodic boundary conditions in our system there are
some conditions which need to be imposed on the variable k. Our periodic
boundary conditions require the following

f(x+N) = f(x) (35)

22

where N is the size of our lattice. We now apply this condition to our
definition of the Fourier transform. Where we define x′ = x+N

f̃(k) = a
∑
x

f(x+N)e−ikx = a
∑
x

f(x′)e−ik(x
′−N) = a

∑
x

f(x′)e−ikx
′
eikN

(36)
As we require the RHS to be equal to the LHS we find that eikN must be

of the form e2πm where m in some integer. Hence we arrive at a condition
on k being that k = 2πm

aN .

We now examine the continuum limit of our Action term which would be

S =

∫
dt

1

2
∂µq(t)∂

µq(t) + V (q(t)) (37)

For this manipulation the form of v(q) does not matter and so we will
ignore it for the time being, in later explorations of Fourier Acceleration the
form will matter much more.

Now we integrate by parts so that we obtain a double derivative on one
of the fields

S = −
∫
dt

1

2
q(t)∂2q(t) (38)

This operator can be approximated, much the same way we did in the previ-
ous section, using a finite difference method. This time for a second deriva-
tive which will be

f ′′(x) = lim
h→0

f(x− h)− 2f(x) + f(x+ h)

h2
(39)

applying this to our equation and approximating the integral with a sum
we obtain the following

S ≈ −a
2

∑
q(x)

q(t− a)− 2q(t) + q(t+ a)

a2
(40)

we now apply the discrete Fourier transform to this

S ≈ −a
2

∑
t,k,k′

˜q(k′)e−ik
′t

˜q(k)e−ik(t+a) − 2 ˜q(k)e−ikt + ˜q(k)e−ik(t−a)

a2
(41)

we can now take out the factors of eikx and eikx
′

and combine them into a
delta function as

δ(x− x′) =
∑
k

eik(x−x
′) (42)

giving us the expression

23

S ≈
∑
k

˜q(−k) ˜q(k)
e−ika − 2 + eika

a2
(43)

using a trigonometric identity and the fact that ˜φ(−k) = ˜φ∗(k) we see
that

S ≈
∑
k

| ˜q(k)|2 2cos(ka) + 2

a2
(44)

Showing that we have decoupled the oscillators on our lattice and have
hence obtained the Hamiltonian ,as the Fourier transforms of the other terms
in H are simple, for a harmonic oscillator in Fourier space

Hk =
|pk|2

2
+ a
|qk|2

2

(
µ2 +

4

a2
sin2(

ka

2
)
)

(45)

Where again we have used a trig identity to simplify the equation. This
Hamiltonian can now be made into update equations which can be imple-
mented in our HMC simulation. Further background reading can be found
in the following papers [12]

5.2 Methods and Implementation

For the harmonic oscillator this transformation was made much easier by
the quadratic nature of the potential in Fourier space this potential

V (qi) =
µ2q2i

2
(46)

becomes

V (qk) =
µ2|qk|2

2
(47)

which is easy to implement in momentum space. The HMC algorithm now
has two extra steps in its implementation

24

Algorithm 2 Fourier Accelerated Hybrid Monte Carlo Algorithm

1: Pick Random momenta From Gaussian Distribution
2: for N iterations do:
3: Transform the momentum and position into Fourier Space
4: pi+1 = pi − 1

2∆t∂H∂qi
5: for n iterations do:
6: qi+1 = qi + ∆∂H

∂pi
7: if j 6= n-1 then:
8: pi+1 = pi −∆t∂H∂qi

9: pi+1 = pi − 1
2∆t∂H∂qi

10: Transform to position Space
11: Perform Metropolis Update on the new state (p∗, q∗)

However when we examine the anharmonic oscillator we note that the
quartic nature of the potential will prove difficult to deal with in this situa-
tion. The potential will transform to

V (qk) = λδ(k − k′ − k′′ − k′′′)(qkqk′qk′′qk′′′ − f2)2 (48)

Which is not a very useful equation to deal with on a computer. It would
be possible to implement this however it is much easier to search for another
solution. To do this we refer to a method which may seem to be slightly
odd at first but due to the freedom in choosing the momenta in HMC we
can perform this algorithm.

We now choose our Hamiltonian, in the continuum limit, to be the fol-
lowing

H =
p2

M2 + ∂2
+ V (q) (49)

This when we discretise the system will amount to having the coupling
in the momenta and not in the position. Since only the potential of the
system describes the physical properties of the system we are free to choose
whatever momenta we like provided we make the appropriate changes to our
algorithm. These would be

• Change the Distribution which the momenta are drawn from in the
beginning

• Change the EoM appropriately to accommodate this new Hamiltonian

• Account for the changes in degree of freedom.

25

The reason this Hamiltonian was chosen was that previously we trans-
formed the Laplacian operator and found that in discrete fourier space it
had the very pleasing form of

∂2 → 4

a2
sin2(

ka

2
) (50)

As we know how that operator transforms in Discrete momentum space [13]
we now know how the entirety of the momentum term in our Hamiltonian
changes and we can propose a new algorithm which will provide the neces-
sary improvement in speed we are looking for.It should be noted here that
as this next algorithm is going to make heavy use of the Fourier Transform
as this the code uses a package called FFTW [11] (an open source FFT
package). This insured that the cost of adding a Fourier tranform to the al-
gorithm was only O(nlog(n)) as opposed to a slow Fourier transform which
would have been of the order N2.

The new algorithm is now

Algorithm 3 Anharmonic Fourier Accelerated Hybrid Monte Carlo Algo-
rithm

1: Pick Random momenta From Gaussian Distribution in Fourier Space
2: for N iterations do:
3: p̃k = |pk|2

1+ 4
a2
sin2(ka

2

4: Fourier Transform back to position space
5: qi+1 = qi − 1

2∆tp̃i
6: for n iterations do:
7: pi+1 = pi −∆∂H

∂qi
8: if j 6= n-1 then:
9: Fourier Transform to momentum space

10: p̃k = |pk|2
1+ 4

a2
sin2(ka

2

11: Fourier Transform back to position space
12: qi+1 = qi −∆tp̃i

13: p̃k = |pk|2
1+ 4

a2
sin2(ka

2

14: Fourier Transform back to position space
15: qi+1 = qi − 1

2∆tp̃i
16: Perform Metropolis Update on the new state (p∗, q∗)

26

The above algorithm is quite a bit more complicated than its Harmonic
counterpart this is due to the issues raised in (48).There is also the added
complication of degrees of freedom. As Fourier transformed variables are
complex we have gone from having N degrees of freedom to having 2N
Degrees of Freedom (DoF) hence we need to find some way of reducing
these DoF down back to N .

To do this we have to examine the discrete Fourier transform. We note
that when we take the complex conjugate of (34) we find

D̃(k)∗ =
N−1∑
m=0

e−i
2π
N
mkD(m) =

N−1∑
m=0

ei
2π
N
m(N−k)D(m) (51)

Now using e2πim = +1
Hence we end up with the relation

D̃(k)∗ = D̃(N − k) (52)

This gives a restriction on the Fourier transformed variables, this (when
applied to the system) reduces the number of variables in the system from
2N to N which is needed due to the complex nature of Fourier space. This
restriction is applied in the algorithm for the anharmonic oscillator.

5.2.1 Harmonic Oscillator

To check that Fourier Acceleration still produces valid results we compare
the results from the Fourier accelerated simulations to the previous results.
Here we find that the Fourier Acceleration does not affect the results in a
negative way and produces results which are as accurate as the regular HMC
results.

Lattice Spacing E0 Simulated E0 Continuum Theory Ratio

1.0 0.447128± 0.00012723 0.447214 0.999807
0.5 0.484628±0.000345008 0.485071 0.999087
0.1 0.498186±0.006664186 0.499376 0.997617

Table 4: This shows that Fourier Acceleration still agrees with the theoret-
ical results.

27

5.3 Comparison of Fourier Acceleration to Regular HMC

To show that an improvement in speed has been achieved using Fourier
Acceleration, a parameter was chosen which is known to a high accuracy
and looked at how each of the simulations converged to that value. To
do this values of that parameter were taken as the simulation evolved in
computer time and the squared difference taken from the theoretical value
and plotted the difference as a function of computer time

Figure 8: Comparison Graph between HMC and Fourier Accelerated HMC
showing that the fourier acceleration converged to the theoretical value much
quicker and more accurately than regular HMC

28

Figure 9: Autocorelation function for x in the Fourier Accelerated harmonic
oscillator vs regular HMC

We can also examine the improvement in the integrated autocorrelation
time when compared to Non Fourier Accelerated HMC. The autocorrelation
time is defined as the amount of iterations (or time) which is needed for the
two variables to be statically uncorrelated, i.e.they are not effected by each
other. In the case of this simulation we measure the autocorrelation time
along the Time Lattice and hence measures how independent two oscillators
are. We want this to be as small as possible because in the continuum limit
each oscillator in phase space is thought of as independent.

We can look at the integrated autocorrelation time to gain a more quan-
titative idea of this improvement.

Algorithm Autocorrelation Time

HMC 1.014 ±0.1
FA HMC 0.944 ±0.11

Table 5: Integrated Autocorelation time for x

29

6 Conclusion

In this project I have shown that it is possible to use Hybrid Monte Carlo
methods to simulate a Quantum Harmonic oscillator and anharmonic oscil-
lator. These results have been in line with previous results from this area
of study which have used similar methods. This implementation has been
made general in the package which I have written and so theoretically any
system which takes the form used in this project could be simulated using
this piece of software.

I have also shown that it is possible to apply the Fourier Acceleration
algorithm to a harmonic oscillator both in theory and practice, this was
implemented into the software package i wrote.I simulated the Fourier Ac-
celerated harmonic oscillator, proved it was still consistent with theoretical
results and then showed that a speed up was achieved by examining the Au-
tocorrelation time and the difference from the ground state energy compared
to the regular HMC algorithm.

As a natural extension to this I created a new algorithm which could
be used to improve the simulation for an anharmonic oscillator which ,as
outlined in this report, has issues due to the complex nature of the potential
compared to the harmonic oscillator. I attempted to include this algorithm
into the package however there were a lot of technical issues which needed
to be addressed and time constraints did not allow me to fully complete this
project.

Whilst a speed up for the identified problem case has not been achieved
some evidence has been presented which shows that this new algorithm has
some potential to speed up the HMC algorithm within Lattice Field Theory.
More work would need to be done to extend these results to a full Lattice
Field theory simulation and a little more work would need to be done to
implement the new anharmonic algorithm into the HMC simulation.

7 Acknowledgements

I would like to thank my supervisors Brian and Roger for their invaluable
input through out this project. I would also like to thank Jack Frankland
for his helpful discussions whilst starting off this project both inside and
outside meetings.

30

Code

If you wish to examine the Package i wrote for this project all of the relavent
files can be found here: https://github.com/QuidditchFIsh/Mphys2

The main Algorithm for Harmonic and Anharmonic Oscillator is located
on the master branch with the fourier accelerated version on the branches
fourier and Anharmonic-fourier respectively. The latter branches will need
the FFTW package installed and the correct PATH set.the Analysis packages
are all written for Python3.

31

References

[1] S Duane, A D Kennedy, B J Pendelton, and D Roweth. Hybrid monte
carlo. Physics Letters B, 195(2):216–222, Sep 1987.

[2] Radford M. Neal. MCMC using Hamiltonian dynamics. 2012.

[3] M. Creutz and B. Freedman. A statistical approach to quantum me-
chanics. Annals of Physics, 132(2):427–462, 1981.

[4] R. Blankenbecler, T. Degrand, and R. L. Sugar. Moment
method for eigenvalues and expectation values. Physical Review D,
21(4):1055–1061, 1980.

[5] Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[6] Guido Cossu, Peter Boyle, Norman Christ, Chulwoo Jung, Andreas
Jüttner, and Francesco Sanfilippo. Testing algorithms for critical slow-
ing down. EPJ Web Conf., 175:02008, 2018.

[7] Claudio Bonati and Massimo D’Elia. Topological critical slowing down:
seven variations on a toy model. 2017.

[8] Lorenzo Bongiovanni. Numerical methods for the sign problem in Lattice
Field Theory. PhD thesis, Swansea U., 2015.

[9] Richard P. Feynman, Robert B. Leighton, and Matthew L. Sands. The
Feynman lectures. California Institute of Technology, 1963.

[10] Marise J. E. Westbroek, Peter R. King, Dimitri D. Vvedensky, and
Stephan Dürr. User’s guide to Monte Carlo methods for evaluating
path integrals. 2017.

[11] Andreas Wipf. Statistical approach to quantum field theory: an intro-
duction. Springer Berlin Heidelberg, 2013.

[12] Raul Toral and A. L. Ferreira. Generalized hybrid Monte Carlo. 1994.

[13] Jan Smit. Introduction to quantum fields on a lattice: a robust mate.
Cambridge University Press, 2006.

32

